幼儿园质量安全检测鉴定的注意事项:
一、混凝土结构检测可分为原材料性能、混凝土强度、几何尺寸、配筋、构造、缺陷和损伤检测等项工作,必要时,可进行结构构件性能的实荷检验或结构的动力测试。
二、混凝土材料力学性能检测
1 混凝土材料力学性能的检测主要包括材料的强度检测和材料的变弹性模量、峰值应变和极限应变检测。其中,材料的变形性能可按测得的混凝土强度标准值,根据《混凝土结构设计规范》(GB50010)的有关规定进行换算。
2 混凝土强度检测方法有回弹法、超声回弹综合法、钻芯法、回弹-钻芯修正法等,检测方法的选择应综合考虑结构特点、现场条件和检测方法的适用范围:
1)采用回弹法时,被检测混凝土的表层质量应具有代表性,且混凝土的抗压强度和龄期不应**过相应技术规程限定的范围;
2)采用超声回弹综合法时,被检测混凝土的内外质量应无明显差异,且混凝土的抗压强度不应**过相应技术规程限定的范围;
3)当被检测混凝土的表层质量不具有代表性时,应采用钻芯法;当被检测混凝土的龄期或抗压强度**过回弹法、超声回弹综合法等相应技术规程限定的范围时,可采用钻芯法或钻芯修正法。修正系数的范围宜在0.8~1.2之间。
4)采用回弹法或超声回弹综合法检测混凝土强度时,若检测条件与相应测强曲线的适用条件有较大差异,应进行钻芯修正,钻取芯样数量不应少于6个。
3 选定检测方法后,抽样数量、混凝土强度评定方法等均应执行相应标准的规定。
目前针对建筑检测过程中存在对裂缝的多种解释,现如下:
房屋裂缝的名称,所有房屋中裂缝可以说无处不在,无处不有,关键看部位。裂缝根据其成因,大致可以划分为:
1、结构裂缝--由荷载作用引起的也叫荷载裂缝,如大梁下墙柱的多条竖向裂缝;梁板受力主筋处的横向水平裂、斜裂;跨中的环绕贯通竖裂;支座边的剪切斜裂;受拉杆件的横裂等等。
2、收缩裂缝--由材料干湿变化收缩引起,一般在墙面上呈网状,两种不同的材料可能形成于其界面上。
3、变形裂缝--由变形引起的墙面交叉裂,纵横墙链接竖向裂;倾斜引起的断裂等等。
4、沉降裂缝--由地基基础不均匀(差异)沉降引起的墙体正八字形,倒八字形斜裂;由灰缝灰浆粉化压缩引起的上部水平裂;由支座沉降引起的钢筋混凝土梁的竖向开裂等等。
5、温度裂缝--由热胀冷缩变形引起,一般在房屋顶层(平屋面)沿圈梁的水平裂,沿窗角的竖裂,沿窗角或内纵墙的对角斜裂(两端多、大,中间基本没有);也有沿附墙烟囱的界面上。
工程实施范围和主要环节
校舍安全工程覆盖全国.城市和农村、公立和民办、教育系统和非教育系统的所有中小学。
(一)对中小学校舍进行全面排查鉴定。各地人民**组织对本行政区域内各级各类中小学现有校舍(不舍在建项目)进行逐栋排查,按照抗震设防和有关防灾要求,形成对每一座建筑的鉴定报告,建立校舍安全档案。2008年5月以后已经排查并形成鉴定报告的校舍,可不再重新鉴定。
(二)科学制定校舍安全工程实施规划和方案。根据排查、鉴定结果,结合中小学布局结构调整和正在实施的、农村寄宿制学校建设、中西部农村初中校舍改造等专项工程,科学制定校舍安全工作总体规划和具体的实施计划与方案。
(三)区别情况,分类、分步实施校舍安全工程。对通过维修加固可以达到抗震设防标准的校舍,按照重点设防类抗震设防标准改造加固;对经鉴定不符合要求、不具备维修加固条件的校舍,按重点设防类抗震设防标准和建设工程强制性标准重建;对严重地质灾害易发地区的校舍进行地质灾害危险性评估并实行避险迁移;对根据学校布局规划确应废弃的危房校舍可不再改造,但必须确保拆除,不再使用;完善校舍防火、防雷等综合防灾标准,并严格执行。 新建校舍必须按照重点设防类抗震设防标准进行建设,校址选择应符合工程建设强制性标准和国家有关部门发布的《汶川地震灾后重建学校规划建筑设计导则》规定,并避开有隐患的淤地坝、蓄水池、尾矿库、储灰库等建筑物下游易致灾区。
抗震规范规定:除框架**层和柱轴压比小于0.15者及框支梁与框支柱以外,柱端弯矩设计值应符合:
分别为一级取1.4,二级取1.2,三级取1.1。9度及一级框架结构尚应符合, 根据实配钢筋面积及材料强度标准值确定。底层柱轴力大,塑性转的能力差,为避免柱脚出铰后压溃,一、二、三级框架结构底层,柱端截面组合弯矩设计值分别乘以增大系数1.5,1.25和1.15。角柱的调整后的组合弯矩尚应乘以不小于1.10的系数。对一级抗震等级的剪力墙肢截面组合弯矩设计值进行调整,迫使塑性铰出现在墙肢底部加强部位,底部加强部位及以上一层弯矩设计值取墙肢底部截面组合弯矩设计值,其它部位乘以1.2的增大系数。对部分框支抗震墙结构,一、二级框支柱的柱上端和底层柱下端,其组合弯矩设计值应分别乘以增大系数1.5和1.25。
以上“强柱弱梁”的调整措施,经过非线性动力反应分析表明,基本满足大震不倒地要求。在7度区,梁的钢筋由重力荷载控制,柱的钢筋基本由小配筋率控制。全面增大了柱梁相对抗弯能力。7度区很难出现正弯矩塑性铰,对抵抗大震起到有利作用。在9度区,采用实配钢筋面积和材料强度标准值计算柱内弯矩,构造上梁钢筋的增大同样导致柱内弯矩设计值的增大,在多波输入下,梁端塑性铰转动大,发展较充分,柱端塑性铰发展不充分,转动较小。塑性变形更多集中与梁端,满足抗震能力设计要求。对8度区,其大震位移反应同9度差不多,但柱端塑性铰较9度多,转动大,梁端塑性铰出现充分但转动小,“强柱弱梁”效果不明显,有关*建议8度二级抗震等级时,弯矩增大系数宜取1.35,这有待的完善。
强剪弱弯
“强剪弱弯”是为了保证塑性铰截面在达到预期非弹性变形之前不发生剪切破坏。就常见的结构而言,主要表现在梁端、柱端、剪力墙底部加强区、剪力墙洞口连梁端部、梁柱节点**区。与非抗震相比,增强措施主要表现在提高作用剪力;调整抗剪承载力两个方面。
作用剪力
一、二、三级框架梁和抗震墙中跨高比大于2.5的连梁,剪力设计值 其中,一级取1.3,二级取1.2,三级取1.1,一级框架结构及9度尚应符合。一、二、三级框架柱和框支柱,剪力设计值 其中,一级取1.4,二级取1.2,三级取1.1,一级框架结构及9度尚应符合。一、二、三级抗震墙底部加强部位,剪力设计值 其中,一级取1.6,二级取1.4,三级取1.2, 9度尚应符合。梁柱节点,一、二级抗震等级进行节点**区抗震受剪承载力验算,三四级应符合抗震构造措施,对9度设防及一级抗震等级的框架结构,考虑到梁端已出现塑性铰,节点的剪力完全由梁端实际屈服弯矩决定,按梁端实配钢筋面积和材料强度标准值计算,乘以1.15的增大系数。其它一级按梁端弯矩设计值计算,剪力增大系数为1.35,二级为1.2。
抗剪公式
国内外低周反复荷载作用下钢筋混凝土连续梁及悬臂梁受剪承载力实验表明,混凝土剪压区剪切强度的降低、斜裂缝间骨料咬合力及纵筋暗销力的降低是梁受剪承载力降低的主要原因。规范对混凝土的受剪承载力降为非抗震的60%,钢筋项没有降低。同样,对偏压柱受剪承载力实验表明,反复加载使柱受剪承载力降低10%~30%,主要由混凝土项引起,采取与梁相同的作法。对剪力墙的实验表明,其反复加载比单调加载受剪承载力降低15%~20%,采用非抗震受剪承载力乘以0.8的折减系数。梁柱节点的抗震受剪承载力由混凝土斜压杆和水平箍筋两部分受剪承载力组成,有关*给出了相关公式。
为了防止梁、柱、连梁、剪力墙、节点发生斜压破坏,我们对受剪截面规定了受剪承载力上限,即规定了配箍率的上限值。
通过非弹性动力反应分析表明,以上措施基本满足强剪弱弯的要求。由于二级抗震等级梁柱在大震下塑性转动仍很大,有关*建议剪力增大系数不宜比一级相差过大,对梁取1.25较好,对柱宜取1.3~1.35。其取值的合理性有待于完善。
需要说明的是,梁柱节点受力非常复杂,要保证梁柱钢筋在节点中的锚固,在梁柱端发生抗弯破坏前,节点不发生剪切破坏,其实质应属于“强剪弱弯”的范畴。节点仅对一、二级抗震等级的剪力进行调整,其增大系数比柱的要小,构造措施也比柱端弱些。“较强节点”的说法,不值得提倡。